Rational Design of Disulfide Bonds Increases Thermostability of a Mesophilic 1,3-1,4-β-Glucanase from Bacillus terquilensis
نویسندگان
چکیده
1,3-1,4-β-glucanase is an important biocatalyst in brewing industry and animal feed industry, while its low thermostability often reduces its application performance. In this study, the thermostability of a mesophilic β-glucanase from Bacillus terquilensis was enhanced by rational design and engineering of disulfide bonds in the protein structure. Protein spatial configuration was analyzed to pre-exclude the residues pairs which negatively conflicted with the protein structure and ensure the contact of catalytic center. The changes in protein overall and local flexibility among the wild-type enzyme and the designated mutants were predicted to select the potential disulfide bonds for enhancement of thermostability. Two residue pairs (N31C-T187C and P102C-N125C) were chosen as engineering targets and both of them were proved to significantly enhance the protein thermostability. After combinational mutagenesis, the double mutant N31C-T187C/P102C-N125C showed a 48.3% increase in half-life value at 60°C and a 4.1°C rise in melting temperature (Tm) compared to wild-type enzyme. The catalytic property of N31C-T187C/P102C-N125C mutant was similar to that of wild-type enzyme. Interestingly, the optimal pH of double mutant was shifted from pH6.5 to pH6.0, which could also increase its industrial application. By comparison with mutants with single-Cys substitutions, the introduction of disulfide bonds and the induced new hydrogen bonds were proved to result in both local and overall rigidification and should be responsible for the improved thermostability. Therefore, the introduction of disulfide bonds for thermostability improvement could be rationally and highly-effectively designed by combination with spatial configuration analysis and molecular dynamics simulation.
منابع مشابه
Cloning, expression of b-1,3-1,4 glucanase from Bacillus subtilis SU40 and the effect of calcium ion on the stability of recombinant enzyme: in vitro and in silico analysis
A new glucanolytic bacterial strain, SU40 was isolated, and identified as Bacillus subtilis on the basis of 16S rRNA sequence homology and phylogenetic tree analysis. The gene encoding β-1,3-1,4-glucanase was delineated, cloned into pET 28a+ vector and heterologously overexpressed in Escherichia coli BL21(DE3). The purified recombinant enzyme was about 24 kDa. The enzyme exhibited maximum activ...
متن کاملAction of an endo-β-1,3(4)-glucanase on cellobiosyl unit structure in barley β-1,3:1,4-glucan
β-1,3:1,4-Glucan is a major cell wall component accumulating in endosperm and young tissues in grasses. The mixed linkage glucan is a linear polysaccharide mainly consisting of cellotriosyl and cellotetraosyl units linked through single β-1,3-glucosidic linkages, but it also contains minor structures such as cellobiosyl units. In this study, we examined the action of an endo-β-1,3(4)-glucanase ...
متن کاملRecombinant production and characterization of full-length and truncated β-1,3-glucanase PglA from Paenibacillus sp. S09
BACKGROUND β-1,3-Glucanases catalyze the hydrolysis of glucan polymers containing β-1,3-linkages. These enzymes are of great biotechnological, agricultural and industrial interest. The applications of β-1,3-glucanases is well established in fungal disease biocontrol, yeast extract production and wine extract clarification. Thus, the identification and characterization of novel β-1,3-glucanases ...
متن کاملLignocellulose binding of a Cel5A-RtCBM11 chimera with enhanced β-glucanase activity monitored by electron paramagnetic resonance
Background The Bacillus subtilis endo-β-1,4-glucanase (BsCel5A) hydrolyzes β-1,3-1,4-linked glucan, and the enzyme includes a family 3 carbohydrate-binding module (CBM3) that binds β-1,4-linked glucan. Methods Here we investigate the BsCel5A β-1,3-1,4 glucanase activity after exchanging the CBM3 domain for the family 11 CBM from Ruminiclostridium thermocellum celH (RtCBM11) having β-1,3-1,4 g...
متن کاملDomain-swapping of mesophilic xylanase with hyper-thermophilic glucanase
BACKGROUND Domain fusion is limited at enzyme one terminus. The issue was explored by swapping a mesophilic Aspergillus niger GH11 xylanase (Xyn) with a hyper-thermophilic Thermotoga maritima glucanase (Glu) to construct two chimeras, Xyn-Glu and Glu-Xyn, with an intention to create thermostable xylanase containing glucanase activity. RESULTS When expressed in E. coli BL21(DE3), the two chime...
متن کامل